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Production codes have lots of features that make them
difficult to optimize

• We use unstructured meshes as a
form of adaptivity, greatly reducing
our zone counts

• Multiple physics packages run
(usually) sequentially

• Problem specification is completely
abstract, often behind opaque
function calls

• The code often has multiple algorithm
choices for different problems

• Code is maintained by physics
experts, not performance experts

Material interfaces and
gradients are resolved with

unstructured mesh
LLNL-PRES-581073
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Mulard is written to emulate a production code
• Collection of loosely coupled classes manage complexity of

algorithms
• Supports running several different problems in 2D and 3D
• Adds extra opportunity for parallelism by solving multiple

equations together
• Meant to be easily understandable and flexible more than high

performance
.
Goals for Mulard..

......

• Explore on-node parallelism (threads, GPU, etc.)
• Explore data storage layouts for optimal performance
• More flexible than the production codes
• Have some of the complications of the production code

• Mulard letters come from ‘MULtigroup RAdiation Diffusion’
• A mulard is a sterile, hybrid duck raised for food

LLNL-PRES-581073



4/12

. .
Intro

. .
Physics

. . .
Mulard

. .
Performance

. .
Conclusions

High energy-density physics experiments are
dominated by energy transfer between radiation and
material
• Photons of different frequencies, Eg

diffuse through material at different
rates, ∇ · Dg∇Eg

• Each group of photons deposits
energy in the material (u) at the rate
σgEg

• Material radiates photons into each
group, σgBg(T(u))

∂Eg
∂t −∇ · Dg∇Eg = σg [Bg(T)− Eg] + Sg

∂u
∂t =

∑
g

σg [Eg − Bg(T)] + Q,
Radiation flows through a pipe,

heating material
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The discretization is highly parallelizable

for all zones do
for all integration points do

compute basis functions and gradients
transform to real space
for all groups do

compute material properties
accumulate to local ..submatrix

accumulate ..submatrix into global matrix
for all groups do

solve linear system for Eg
add contribution of Eg to material

Global sparse matrix
structure for 3 groups.

Each group (box) forms a
diffusion matrix, coupled to

other groups locally.

• First three nested loops can be computed in any order
• At inner most level, vectorized code should be possible
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Mulard comes with three levels of applications
.
All use MFEM, an open source finite element library..

......

• Self-contained and easy to use
• http://code.google.com/p/mfem/

• Mulard is the full featured, multigroup code
• Solves different problems via an abstract material interface to test

difference performance issues and be slightly more production-like
• Abstracts details of solvers and matrix storage, making it easy to

switch them out
• Runtime selection of finite element order and other algorithmic

options
• Duckling solves only one problem

• Has many algorithmic run-time options
• Has lots of code for calculating the quality of the solution.

• Hatchling is similar to Mantevo’s miniFE.
• Integrates the finite elements over the mesh
• Solves the matrix

LLNL-PRES-581073
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The different applications vary considerably in code
size

Code Files Lines Comments
MFEM 107 39,468 4,399
Mulard 26 4383 1,299
Duckling 3 969 367
Hatchling 1 430 170

• We use a small portion of MFEM
• Unstructured mesh management (reading, storing, accessing)
• Finite element operations
• Sparse linear algebra storage and solvers.

• Many components are independent; for example, it is easy to
switch all the global sparse matrix stuff out for your own.
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Code Tour

• Where to find it:
http://portal.nersc.gov/project/training/files/SC12/Mulard/

• Doxygen:
http://portal.nersc.gov/project/training/files/SC12/Mulard/html

• How to build it: On NERSC:
• module load cmake/2.8.9

• cp -R /global/project/projectdirs/training/2012/SC12/Mulard .

• How to run it: ./ReadAndRunMe.sh

• A quick tour of Hatchling
• A quick tour of Mulard
• You can use Visit to look at the simulation output:

http://visit.llnl.gov
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Real work increases with mesh size
(These are really old numbers)
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• As mesh size increases
• Number of time steps also increases
• Percentage of floating point instructions goes up
• Saturate memory bandwidth (IPC goes down)

• In each cycle, setup time shouldn’t be higher than solve time
• But there are some known optimizations in production code
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As groups increase, everything grows roughly linearly
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• Instructions per cycle goes down as bandwidth saturates
• Floating point instruction fraction is roughly constant.
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Opportunities for code exploration
• Explore on-node parallelism:

OpenMP, CUDA, TBB, etc.
• Assemble matrices in parallel
• Solve matrices in parallel
• Reorder data to store block diagonal

matrices
• Reorder loops
• Rewrite loops to use raw data instead

of nice interface
• How much overhead are we paying for

“maintainable” code?
• Explore more advanced algorithms

• Nonlinear coupling instead of
linearized.

• Which finite element order?
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Conclusions

• Mulard scales well with zones or groups
• Designed to explore trade-offs of on-node parallelism

(OpenMP, CUDA) in a more production-like code
• There are many levels of parallelism to explore with multiple

equations to solve
.
See Also..

......

• The library we’re based on:
http://code.google.com/p/mfem/

• Links to all LLNL mini-apps: http://codesign.llnl.gov
• https://computation.llnl.gov/casc/ShockHydro/
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