Mulard: A Multigroup Radiation Diffusion
Compact-App

Using Application Proxies for Co-Design of Future HPC Computer
Systems and Applications, Supercomputing 2012

November, 2012

Thomas A. Brunner

| H Lawrence Livermore

National Laboratory

LLNL-PRES-581073

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC




Intro Physics Mulard Performance Conclusions
[ 1¢} oo 000 oo oo

Production codes have lots of features that make them
difficult to optimize

o We use unstructured meshes as a
form of adaptivity, greatly reducing
our zone counts

o Multiple physics packages run
(usually) sequentially

¢ Problem specification is completely
abstract, often behind opaque
function calls

e The code often has multiple algorithm
choices for different problems

e Code is maintained by physics
experts, not performance experts

Material interfaces and
gradients are resolved with
unstructured mesh
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Mulard is written to emulate a production code

e Collection of loosely coupled classes manage complexity of
algorithms

e Supports running several different problems in 2D and 3D

o Adds extra opportunity for parallelism by solving multiple
equations together

e Meant to be easily understandable and flexible more than high
performance

Goals for Mulard

o Explore on-node parallelism (threads, GPU, etc.)

e Explore data storage layouts for optimal performance

e More flexible than the production codes

e Have some of the complications of the production code

e Mulard letters come from ‘MULtigroup RAdiation Diffusion’
e A mulard is a sterile, hybrid duck raised for food UL_
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High energy-density physics experiments are
dominated by energy transfer between radiation and
material

» Photons of different frequencies, Eg
diffuse through material at different
rates, V - Dy VEg

e Each group of photons deposits
energy in the material (uv) at the rate
agEq

o Material radiates photons into each
group, ogBy(T(u))

OE,
a_tg —V-DgVEg = 0g[By(T) — Eg]l + Sq
Radiation flows through a pipe,

ou
ot — Z og[Eqg — Bg(T)] + Q, heating material UL_
9
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The discretization is highly parallelizable

3
%%:%% %,
for all zones do e X@%
for all integration points do = e
compute basis functions and gradients i,
transform to real space K
for all groups do P
compute material properties -
accumulate to local %“*:"k
accumulate into global matrix Global sparse matrix
for all groups do structure for 3 groups.
solve linear system for Ey4 Each group (box) forms a
add contribution of E4 to material diffusion matrix, coupled to

other groups locally.
o First three nested loops can be computed in any order
e At inner most level, vectorized code should be possible

(>
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Mulard comes with three levels of applications

All use MFEM, an open source finite element library
e Self-contained and easy to use
e http://code.google.com/p/mfem/

e Mulard is the full featured, multigroup code
e Solves different problems via an abstract material interface to test
difference performance issues and be slightly more production-like
o Abstracts details of solvers and matrix storage, making it easy to
switch them out
¢ Runtime selection of finite element order and other algorithmic
options
e Duckling solves only one problem
e Has many algorithmic run-time options
o Has lots of code for calculating the quality of the solution.
e Hatchling is similar to Mantevo’s miniFE.
o Integrates the finite elements over the mesh
« Solves the matrix UL_
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Mulard
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The different applications vary considerably in code
size

Code Files Lines Comments
MFEM 107 39,468 4,399
Mulard 26 4383 1,299
Duckling 3 969 367
Hatchling 1 430 170

e We use a small portion of MFEM

e Unstructured mesh management (reading, storing, accessing)
¢ Finite element operations
e Sparse linear algebra storage and solvers.

e Many components are independent; for example, it is easy to
switch all the global sparse matrix stuff out for your own.

(5
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Code Tour

e Where to find it:
http://portal.nersc.gov/project/training/files/SC12/Mulard/

e Doxygen:
http://portal.nersc.gov/project/training/files/SC12/Mulard/html

e How to build it: On NERSC:

e module load cmake/2.8.9
e cp -R /global/project/projectdirs/training/2012/SC12/Mulard .

e How to run it ./ReadAndRunMe.sh
e A quick tour of Hatchling
e A quick tour of Mulard

e You can use Visit to look at the simulation output:
http://visit.1llnl.gov

(>
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Real work increases with mesh size

(These are really old numbers)

Run times CPU performance
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e As mesh size increases

e Number of time steps also increases
o Percentage of floating point instructions goes up
e Saturate memory bandwidth (IPC goes down)

e In each cycle, setup time shouldn’t be higher than solve time
o But there are some known optimizations in production code LI-
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As groups increase, everything grows roughly linearly
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e Instructions per cycle goes down as bandwidth saturates
e Floating point instruction fraction is roughly constant.
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Opportunities for code exploration

. et
e Explore on-node parallelism: %:%

OpenMP, CUDA, TBB, etc.
e Assemble matrices in parallel
e Solve matrices in parallel

o Reorder data to store block diagonal
matrices

i
g

o Reorder loops

¢ Rewrite loops to use raw data instead
of nice interface
e How much overhead are we paying for
“maintainable” code?

e Explore more advanced algorithms

¢ Nonlinear coupling instead of
linearized.
e Which finite element order?

LLNL-PRES-581073

1112



Conclusions
oce

Conclusions

e Mulard scales well with zones or groups

e Designed to explore trade-offs of on-node parallelism
(OpenMP, CUDA) in a more production-like code

e There are many levels of parallelism to explore with multiple
equations to solve

See Also

e The library we're based on:
http://code.google.com/p/mfem/

e Links to all LLNL mini-apps: http://codesign.1l1lnl.gov
e https://computation.llnl.gov/casc/ShockHydro/

(4
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