Mulard: A Multigroup Radiation Diffusion
Compact-App

Using Application Proxies for Co-Design of Future HPC Computer
Systems and Applications, Supercomputing 2012

November, 2012

Thomas A. Brunner

| H Lawrence Livermore

National Laboratory

LLNL-PRES-581073

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Intro Physics Mulard Performance Conclusions
[1¢} oo 000 oo oo

Production codes have lots of features that make them
difficult to optimize

o We use unstructured meshes as a
form of adaptivity, greatly reducing
our zone counts

o Multiple physics packages run
(usually) sequentially

¢ Problem specification is completely
abstract, often behind opaque
function calls

e The code often has multiple algorithm
choices for different problems

e Code is maintained by physics
experts, not performance experts

Material interfaces and
gradients are resolved with
unstructured mesh

LLNL-PRES-581073 212

Intro
oe

Mulard is written to emulate a production code

e Collection of loosely coupled classes manage complexity of
algorithms

e Supports running several different problems in 2D and 3D

o Adds extra opportunity for parallelism by solving multiple
equations together

e Meant to be easily understandable and flexible more than high
performance

Goals for Mulard

o Explore on-node parallelism (threads, GPU, etc.)

e Explore data storage layouts for optimal performance

e More flexible than the production codes

e Have some of the complications of the production code

e Mulard letters come from ‘MULtigroup RAdiation Diffusion’
e A mulard is a sterile, hybrid duck raised for food UL_

LLNL-PRES-581073 3/12

High energy-density physics experiments are
dominated by energy transfer between radiation and
material

» Photons of different frequencies, Eg
diffuse through material at different
rates, V - Dy VEg

e Each group of photons deposits
energy in the material (uv) at the rate
agEq

o Material radiates photons into each
group, ogBy(T(u))

OE,
a_tg —V-DgVEg = 0g[By(T) — Eg]l + Sq
Radiation flows through a pipe,

ou
ot — Z og[Eqg — Bg(T)] + Q, heating material UL_
9

LLNL-PRES-581073 412

Physics
oe

The discretization is highly parallelizable

3
%%:%% %,
for all zones do e X@%
for all integration points do = e
compute basis functions and gradients i,
transform to real space K
for all groups do P
compute material properties -
accumulate to local %“*:"k
accumulate into global matrix Global sparse matrix
for all groups do structure for 3 groups.
solve linear system for Ey4 Each group (box) forms a
add contribution of E4 to material diffusion matrix, coupled to

other groups locally.
o First three nested loops can be computed in any order
e At inner most level, vectorized code should be possible

(>

LLNL-PRES-581073 512

Mulard
@00

Mulard comes with three levels of applications

All use MFEM, an open source finite element library
e Self-contained and easy to use
e http://code.google.com/p/mfem/

e Mulard is the full featured, multigroup code
e Solves different problems via an abstract material interface to test
difference performance issues and be slightly more production-like
o Abstracts details of solvers and matrix storage, making it easy to
switch them out
¢ Runtime selection of finite element order and other algorithmic
options
e Duckling solves only one problem
e Has many algorithmic run-time options
o Has lots of code for calculating the quality of the solution.
e Hatchling is similar to Mantevo’s miniFE.
o Integrates the finite elements over the mesh
« Solves the matrix UL_

LLNL-PRES-581073 6/12

http://code.google.com/p/mfem/

Mulard
(o] le}

The different applications vary considerably in code
size

Code Files Lines Comments
MFEM 107 39,468 4,399
Mulard 26 4383 1,299
Duckling 3 969 367
Hatchling 1 430 170

e We use a small portion of MFEM

e Unstructured mesh management (reading, storing, accessing)
¢ Finite element operations
e Sparse linear algebra storage and solvers.

e Many components are independent; for example, it is easy to
switch all the global sparse matrix stuff out for your own.

(5

LLNL-PRES-581073 72

Mulard
ooe

Code Tour

e Where to find it:
http://portal.nersc.gov/project/training/files/SC12/Mulard/

e Doxygen:
http://portal.nersc.gov/project/training/files/SC12/Mulard/html

e How to build it: On NERSC:

e module load cmake/2.8.9
e cp -R /global/project/projectdirs/training/2012/SC12/Mulard .

e How to run it ./ReadAndRunMe.sh
e A quick tour of Hatchling
e A quick tour of Mulard

e You can use Visit to look at the simulation output:
http://visit.1llnl.gov

(>

LLNL-PRES-581073 8/12

http://portal.nersc.gov/project/training/files/SC12/Mulard/
http://portal.nersc.gov/project/training/files/SC12/Mulard/html
http://visit.llnl.gov

Performance
e0

Real work increases with mesh size

(These are really old numbers)

Run times CPU performance
UBLILILALL LALLM T T T T \Ammk TTAITT]
—_ 2L . 10 | a4t B
g 10 g) 3 e
\({’/ 100 [~ W e — 8 [inslcycle
QE) @ e (>), 51 A %FPins B
i: 10,2 [T e 0O total (.\/)
w ° A cycle setup .E 2 | EEE E B
41| o ® cydesole | o O O g
10 Lol vl el ol 1 O SRR RRTTITI R SR RTTI R AR RTINS RRRIT SRR
10" 102 10° 10* 105 106 10" 102 10® 10* 105 106

zones zones

e As mesh size increases

e Number of time steps also increases
o Percentage of floating point instructions goes up
e Saturate memory bandwidth (IPC goes down)

e In each cycle, setup time shouldn’t be higher than solve time
o But there are some known optimizations in production code LI-

LLNL-PRES-581073 912

Performance
oe

As groups increase, everything grows roughly linearly

100
(&)
[0}
)
5 10
£
=y

Run times

>

» 0O

]

® cycle solve

— 9

|
2 64

| | |
4 8 163
groups

ins/cyc or %

15

10

o N

CPU performance

0O 0 o o o g
I S A E E—

2 4 8 16 32 64
groups

0
|
1

e Instructions per cycle goes down as bandwidth saturates
e Floating point instruction fraction is roughly constant.

LLNL-PRES-581073

L

1012

Conclusions
[o)

Opportunities for code exploration

. et
e Explore on-node parallelism: %:%

OpenMP, CUDA, TBB, etc.
e Assemble matrices in parallel
e Solve matrices in parallel

o Reorder data to store block diagonal
matrices

i
g

o Reorder loops

¢ Rewrite loops to use raw data instead
of nice interface
e How much overhead are we paying for
“maintainable” code?

e Explore more advanced algorithms

¢ Nonlinear coupling instead of
linearized.
e Which finite element order?

LLNL-PRES-581073

1112

Conclusions
oce

Conclusions

e Mulard scales well with zones or groups

e Designed to explore trade-offs of on-node parallelism
(OpenMP, CUDA) in a more production-like code

e There are many levels of parallelism to explore with multiple
equations to solve

See Also

e The library we're based on:
http://code.google.com/p/mfem/

e Links to all LLNL mini-apps: http://codesign.1l1lnl.gov
e https://computation.llnl.gov/casc/ShockHydro/

(4

LLNL-PRES-581073 12112

http://code.google.com/p/mfem/
http://codesign.llnl.gov
https://computation.llnl.gov/casc/ShockHydro/

	Intro
	Physics
	Mulard
	Performance
	Conclusions

